5.4 Indefinite Integrals and the Net Change Theorem/33: Difference between revisions
Jump to navigation
Jump to search
(Created page with "<math> \begin{align} \int_{1}^{4}\sqrt{\frac{5}{x}}dy &= \int_{1}^{4}(\frac{\sqrt{5}}{\sqrt{x}})dx = 5^\frac{1}{2}\int_{1}^{4}x^\frac{-1}{2}dx\\[2ex] &= \sqrt{5}\times2x^\frac{1}{2}\bigg|_{1}^{4} = \sqrt{5}\times2\sqrt{x}\bigg|_{1}^{4} = 2\sqrt{5x}\bigg|_{1}^{4} \\[2ex] &= 2\sqrt{5\times4}-2\sqrt{5\times1}\bigg|_{1}^{4} \\[2ex] &= 2\sqrt{20}-2\sqrt{5}\bigg|_{1}^{4} = 4\sqrt{5}-2\sqrt{5}\bigg|_{1}^{4} = 2\sqrt{5} \end{align} </math>") |
m (Protected "5.4 Indefinite Integrals and the Net Change Theorem/33" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite))) |
||
(11 intermediate revisions by 2 users not shown) | |||
Line 3: | Line 3: | ||
\int_{1}^{4}\sqrt{\frac{5}{x}}dy &= \int_{1}^{4} | \int_{1}^{4}\sqrt{\frac{5}{x}}dy &= \int_{1}^{4}\frac{\sqrt{5}}{\sqrt{x}}dx = \sqrt{5}\int_{1}^{4}x^{-\frac{1}{2}}dx\\[2ex] | ||
&= \sqrt{5} | &= 2\sqrt{5}x^{\frac{1}{2}}\bigg|_{1}^{4} \\[2ex] | ||
&= 2\sqrt{5 | &= [2\sqrt{5}\sqrt{4}]-[2\sqrt{5}{\sqrt{1}}] = 4\sqrt{5}-2\sqrt{5} \\[2ex] | ||
&= 2\sqrt{5} | |||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 19:41, 21 September 2022