5.5 The Substitution Rule/9: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(6 intermediate revisions by 2 users not shown) | |||
Line 17: | Line 17: | ||
\begin{align} | \begin{align} | ||
\int u^{20}\cdot\frac{1}{3}du \\[2ex] &= \frac{1}{3}\int u^{20}du | \int u^{20}\cdot\frac{1}{3}du \\[2ex] | ||
&= \frac{1}{3}\int u^{20}du | |||
&= \frac{1}{3}\cdot\frac{1}{20+1} u^{20+1} | &= \frac{1}{3}\cdot\frac{1}{20+1} u^{20+1} | ||
&= \frac{1}{3}\cdot\frac{1}{21} u^{21} | &= \frac{1}{3}\cdot\frac{1}{21} u^{21} | ||
&= \frac{1}{63} u^{21} + c | &= \frac{1}{63} u^{21} + c | ||
&= frac{1}{63} (3x-2)^{21} + c | &= \frac{1}{63} (3x-2)^{21} + c | ||
\end{align} | \end{align} | ||
</math> | |||
<math> | |||
=\frac{1}{63} (3x^21-2097152) + c | |||
</math> | </math> |
Latest revision as of 19:37, 20 September 2022