5.5 The Substitution Rule/35: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
Tag: Manual revert
No edit summary
 
(8 intermediate revisions by the same user not shown)
Line 4: Line 4:


<math>\begin{align}
<math>\begin{align}
let \; u &=1 + cos^2x \\[2ex]
let \; u &=1 + cos^2x \\[2ex]
du &= 2cosx \;\cdot (-sinx) \\[2ex]
du &= 2cosx \;\cdot (-sinx)\;dx \\[2ex]
-du & = 2sin(x)cos(x)\;dx & \\[2ex]
-du & = 2sin(x)cos(x)\;dx & \\[2ex]
-du & = sin(2x)dx &  
-du & = sin(2x)dx &  
Line 12: Line 12:




<math>\begin{align} \ \int \frac{sin 2 x}{1 + cos^2x} dx = -\ \int \frac {du}{u} = \ \int -ln( 1 + u)= \ \int| 1 + cos^2x| + c
<math>\begin{align} \ \int \frac{sin 2 x}{1 + cos^2x} dx\;=\; -\ \int \frac {du}{u}\;=\;-ln( 1 + u) + c\;=\;-| 1 + cos^2x| + c


\end{align}
\end{align}
</math>
</math>

Latest revision as of 05:31, 5 September 2022