5.5 The Substitution Rule/35: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(5 intermediate revisions by the same user not shown) | |||
Line 5: | Line 5: | ||
<math>\begin{align} | <math>\begin{align} | ||
let \; u &=1 + cos^2x \\[2ex] | let \; u &=1 + cos^2x \\[2ex] | ||
du &= 2cosx \;\cdot (-sinx);dx \\[2ex] | du &= 2cosx \;\cdot (-sinx)\;dx \\[2ex] | ||
-du & = 2sin(x)cos(x)\;dx & \\[2ex] | -du & = 2sin(x)cos(x)\;dx & \\[2ex] | ||
-du & = sin(2x)dx & | -du & = sin(2x)dx & | ||
Line 12: | Line 12: | ||
<math>\begin{align} \ \int \frac{sin 2 x}{1 + cos^2x} dx = -\ \int \frac {du}{u} = \ | <math>\begin{align} \ \int \frac{sin 2 x}{1 + cos^2x} dx\;=\; -\ \int \frac {du}{u}\;=\;-ln( 1 + u) + c\;=\;-| 1 + cos^2x| + c | ||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 05:31, 5 September 2022