5.5 The Substitution Rule/59: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
(Created page with "<math> \int_{1}^{2}\frac{ e^\frac{1}{x}}{x^2}\,dx </math> <br><br> <math> \begin{align} u &=\frac{1}{x} \\[2ex] du &=-\frac{1}{x^2}dx \\[2ex] -du &=\frac{1}{x^2}dx \\[2ex] \end{align} </math> New upper limit:<math> \frac{1}{2} = \frac{1}{(2)} <\math> <br> New lower limit: <math> 1 = \frac{1}{(1)} <\math> <math> \begin{align} \int_{1}^{2}\frac{ e^\frac{1}{x}}{x^2}\,dx &=\int_{1}^{2} e^\frac{1}{x}(\frac{1}{x^2}\,dx) &=\int_{1}^{\frac{1}{2}}e^u\,-du \\[2ex] &=-\int_{1}...")
 
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 10: Line 10:
</math>
</math>


New upper limit:<math> \frac{1}{2} = \frac{1}{(2)} <\math> <br>
 
New lower limit: <math> 1 = \frac{1}{(1)} <\math>
 
New upper limit:<math>\frac{1}{2} = \frac{1}{(2)} </math><br>
New lower limit: <math> 1 = \frac{1}{(1)} </math>
 
 


<math>
<math>
\begin{align}
\begin{align}
\int_{1}^{2}\frac{ e^\frac{1}{x}}{x^2}\,dx &=\int_{1}^{2} e^\frac{1}{x}(\frac{1}{x^2}\,dx)
\int_{1}^{2}\frac{ e^\frac{1}{x}}{x^2}\,dx &=\int_{1}^{2} e^\frac{1}{x}(\frac{1}{x^2}\,dx)
&=\int_{1}^{\frac{1}{2}}e^u\,-du \\[2ex]
&=\int_{1}^{\frac{1}{2}}e^u\,(-du) \\[2ex]
&=-\int_{1}^{\frac{1}{2}}e^u\,du \\[2ex]
&=-\int_{1}^{\frac{1}{2}}e^u\,du \\[2ex]
&=-e^u\bigg|_{1}^{\frac{1}{2}} \\[2ex]
&=-e^u\bigg|_{1}^{\frac{1}{2}} \\[2ex]
&=-\sqrt{e} - (-e^1) \\[2ex]
&=e-\sqrt{e}
&=e-\sqrt{e}
\end {align}
\end {align}
</math>
</math>

Latest revision as of 02:04, 6 September 2022





New upper limit:
New lower limit: