5.5 The Substitution Rule/59: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 20: Line 20:
\begin{align}
\begin{align}
\int_{1}^{2}\frac{ e^\frac{1}{x}}{x^2}\,dx &=\int_{1}^{2} e^\frac{1}{x}(\frac{1}{x^2}\,dx)
\int_{1}^{2}\frac{ e^\frac{1}{x}}{x^2}\,dx &=\int_{1}^{2} e^\frac{1}{x}(\frac{1}{x^2}\,dx)
&=\int_{1}^{\frac{1}{2}}e^u\,-du \\[2ex]
&=\int_{1}^{\frac{1}{2}}e^u\,(-du) \\[2ex]
&=-\int_{1}^{\frac{1}{2}}e^u\,du \\[2ex]
&=-\int_{1}^{\frac{1}{2}}e^u\,du \\[2ex]
&=-e^u\bigg|_{1}^{\frac{1}{2}} \\[2ex]
&=-e^u\bigg|_{1}^{\frac{1}{2}} \\[2ex]
&=-\sqrt{e} - (-e^1) \\[2ex]
&=e-\sqrt{e}
&=e-\sqrt{e}
\end {align}
\end {align}
</math>
</math>

Latest revision as of 02:04, 6 September 2022





New upper limit:
New lower limit: