5.5 The Substitution Rule/59: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 20: | Line 20: | ||
\begin{align} | \begin{align} | ||
\int_{1}^{2}\frac{ e^\frac{1}{x}}{x^2}\,dx &=\int_{1}^{2} e^\frac{1}{x}(\frac{1}{x^2}\,dx) | \int_{1}^{2}\frac{ e^\frac{1}{x}}{x^2}\,dx &=\int_{1}^{2} e^\frac{1}{x}(\frac{1}{x^2}\,dx) | ||
&=\int_{1}^{\frac{1}{2}}e^u\,-du \\[2ex] | &=\int_{1}^{\frac{1}{2}}e^u\,(-du) \\[2ex] | ||
&=-\int_{1}^{\frac{1}{2}}e^u\,du \\[2ex] | &=-\int_{1}^{\frac{1}{2}}e^u\,du \\[2ex] | ||
&=-e^u\bigg|_{1}^{\frac{1}{2}} \\[2ex] | &=-e^u\bigg|_{1}^{\frac{1}{2}} \\[2ex] | ||
&=-\sqrt{e} - (-e^1) \\[2ex] | |||
&=e-\sqrt{e} | &=e-\sqrt{e} | ||
\end {align} | \end {align} | ||
</math> | </math> |
Latest revision as of 02:04, 6 September 2022
New upper limit:
New lower limit: