5.5 The Substitution Rule/69: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(23 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<math> | <math> | ||
\int_{0}^{1} \left(\frac{e^z + 1}{e^z + z}\right) | |||
</math> | |||
<math> | |||
\begin{align} | \begin{align} | ||
\int_{ | |||
u &= e^z + z \\[2ex] | |||
du &= (e^z +1)dx \\[2ex] | |||
\end{align} | |||
</math> | |||
New upper limit: <math> 1 = e^1 + 1 = e + 1 </math><br> | |||
New lower limit: <math> 0 = e^0 + 0 = 1 </math> | |||
<math> | |||
\begin{align} | |||
\int_{0}^{1} \left(\frac{e^z + 1}{e^z + z}\right) &= \int_{0}^{1} \left((e^z +1)dx (\frac{1}{e^z +z}) \right) \\[2ex] | |||
&= \int_{1}^{e+1} \left(\frac{1}{u}\right)du \\[2ex] | |||
&= \left(\ln (|u|) \right) \bigg|_{1}^{e+1} \\[2ex] | |||
&= \ln (|e+1|) - \ln (|1|) \\[2ex] | |||
&= \ln(e+1) - 0 = \ln (e+1) | |||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 16:03, 6 September 2022
New upper limit:
New lower limit: