5.5 The Substitution Rule/69: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(16 intermediate revisions by the same user not shown)
Line 1: Line 1:
<math>  
<math>  
\int_{0}^{1} \left(\frac{e^z + 1}{e^z + z}\right)
</math>
<math>
\begin{align}
\begin{align}
\int_{0}^{1} \left(\frac{e^z + 1}{e^z + z}\right) &= \int_{}^{} \left((e^z +1) (\frac{1}{e^z +z}) \right)
 
u &= e^z + z \\[2ex]
 
du &= (e^z +1)dx \\[2ex]


\end{align}
\end{align}
</math>
</math>


<math>
New upper limit: <math> 1 = e^1 + 1 = e + 1 </math><br>
New lower limit: <math> 0 = e^0 + 0 = 1 </math>  


u= e^z + z
<math>
\begin{align}
\int_{0}^{1} \left(\frac{e^z + 1}{e^z + z}\right) &= \int_{0}^{1} \left((e^z +1)dx (\frac{1}{e^z +z}) \right) \\[2ex]


du= e^z +1
&= \int_{1}^{e+1} \left(\frac{1}{u}\right)du \\[2ex]
&= \left(\ln (|u|) \right) \bigg|_{1}^{e+1} \\[2ex]
&= \ln (|e+1|) - \ln (|1|) \\[2ex]
&= \ln(e+1) - 0 = \ln (e+1)


\end{align}
</math>
</math>

Latest revision as of 16:03, 6 September 2022

New upper limit:
New lower limit: