5.3 The Fundamental Theorem of Calculus/10: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
m (Protected "5.3 The Fundamental Theorem of Calculus/10" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
<math>
<math>
\begin{align}
g(r)=\int_{0}^{r}\sqrt{x^2+4}\,dx
g(r)=\int_{0}^{r}\sqrt{x^2+4}\,dx
</math>




<math>
\frac{d}{dr}(g(r)) = \frac{d}{dr}\left[\int_{0}^{r}\sqrt{x^2+4}\,dx\right] =   
\frac{d}{dr}(g(r)) = \frac{d}{dr}\left[\int_{0}^{r}\sqrt{x^2+4}\,dx\right] =   
 
(1)\cdot\sqrt{(r)^2+4} - (0)\cdot\sqrt{(0)^2+4} =\sqrt{r^2 + 4}
1\cdot\sqrt{(r)^2+4} - 0\cdot\sqrt{(0)^2+4}
</math>
 
=\sqrt{r^2 + 4}




\end{align}
<math>
\text{Therefore, } g'(r) =\sqrt{r^2 + 4}
</math>
</math>

Latest revision as of 20:15, 6 September 2022