5.3 The Fundamental Theorem of Calculus/17: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
m (Protected "5.3 The Fundamental Theorem of Calculus/17" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite))) |
||
(11 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<math> | <math>y=\int_{1-3x}^{1}\frac{u^3}{1+u^2} du</math> | ||
<math>\frac{d}{dx}( | <math> | ||
\frac{d}{dx}(y)=\frac{d}{dx}\left(\int_{1-3x}^{1}\frac{u^3}{1+u^2}\,du\right) = (0)\cdot\frac{(1)^3}{1+(1)^2} | |||
-(-3)\cdot\frac{(1-3x)^3}{1+(1-3x)^2} | |||
</math> | |||
<math> | |||
\text{Therefore, } y' = \frac{3(1-3x)^3}{1+(1-3x)^2} | |||
</math> | |||
Latest revision as of 20:31, 6 September 2022