5.3 The Fundamental Theorem of Calculus/27: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
m (Protected "5.3 The Fundamental Theorem of Calculus/27" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
 
(2 intermediate revisions by the same user not shown)
Line 2: Line 2:
\begin{align}
\begin{align}


\int_0^2 x(2+x^5)\,dx = \int_0^2 (2x+x^6)\,dx &= \int_0^2 (2x+x^6)\,dx \\[2ex]
\int_0^2 x(2+x^5)\,dx &= \int_0^2 (2x+x^6)\,dx = \int_0^2 (2x+x^6)\,dx \\[2ex]




&= \left(\frac{2x^{1+1}}{1+1}+\frac{x^{6+1}}{6+1}\right)\bigg|_{0}^{2}=\left(x^2+\frac{x^7}{7}\right)\bigg|_{0}^{2} \\[2ex]
&= \left(\frac{2x^{1+1}}{1+1}+\frac{x^{6+1}}{6+1}\right)\bigg|_{0}^{2}=\left(x^2+\frac{x^7}{7}\right)\bigg|_{0}^{2} \\[2ex]


&= \left((2)^2-\frac{(2)^7}{7}\right)+\left((0)^2+\frac{(0)^7}{7}\right) \\[2ex]
&= \left((2)^2-\frac{(2)^7}{7}\right)-\left((0)^2+\frac{(0)^7}{7}\right) \\[2ex]


&= \left[4+\frac{2^7}{7}\right]-[0] \\[2ex]
&= \left[4+\frac{2^7}{7}\right]-[0] \\[2ex]

Latest revision as of 21:17, 6 September 2022