5.3 The Fundamental Theorem of Calculus/29: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(8 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
<math> | <math> | ||
\ | \begin{align} | ||
\int_{1}^{9}\frac{x-1}{\sqrt{x}}\,dx &= \int_{1}^{9}\left(\frac{x}{\sqrt{x}}-\frac{1}{\sqrt{x}}\right)dx = \int_{1}^{9}\left(\frac{x}{x^{1/2}}-\frac{1}{x^{1/2}}\right)dx = \int_{1}^{9}\left(x^{1/2} -x^{-1/2}\right)dx \\[2ex] | |||
&= \frac{2x^{3/2}}{3} - 2x^{1/2} \bigg|_{1}^{9} \\[2ex] | |||
&= \left[\frac{2(9)^{3/2}}{3}-2(9)^{1/2}\right]-\left[\frac{2(1)^{3/2}}{3}) - 2(1)^{1/2}\right] \\[2ex] | |||
&= \left[\frac{54}{3} - 6\right] - \left[\frac{2}{3}-2\right] | |||
= \frac{52}{3}-4 \\[2ex] | |||
&=\frac{40}{3} | |||
\end{align} | |||
</math> | </math> |
Latest revision as of 16:21, 13 September 2022