5.5 The Substitution Rule/21: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(47 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<math> | <math> | ||
\int \frac{\cos{(\sqrt{t})}}{\sqrt{t}} dt | \int \frac{\cos{(\sqrt{t})}}{\sqrt{t}}\;dt | ||
</math> | |||
<math>\int\sqrt{u} | |||
<math> | |||
\begin{align} | |||
u &= \sqrt{t} \\[2ex] | |||
du &= (\frac{1}{2}\ \frac{1}{\sqrt{t}})\;dt \\[2ex] | |||
2du &= \frac{1}{\sqrt{t}}\;dt | |||
\end{align} | |||
</math> | |||
<math> | |||
\begin{align} | |||
\int \frac{1}{\sqrt{t}}\cos{(\sqrt{t})} dt &= 2\int \cos {u}\;du \\[2ex] | |||
&= 2 \sin{u}+c \\[2ex] | |||
&= 2 \sin(\sqrt{t}) + c \\[2ex] | |||
\end{align} | |||
</math> |
Latest revision as of 23:27, 13 September 2022