5.5 The Substitution Rule/45: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(28 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<math> | <math> | ||
\int_{}^{} (/frac( | \int_{}^{} \left(\frac {x}{\sqrt[4]{x+2}}\right)dx | ||
</math> | |||
<math> | |||
\begin{align} | |||
u &= x+2 \\[2ex] | |||
du &=1dx \\[2ex] | |||
u-2 &=x \\[2ex] | |||
\end{align} | |||
</math> | |||
<math> | |||
\begin{align} | |||
\int_{}^{} \left(\frac {x}{\sqrt[4]{x+2}}\right)dx &=\int_{}^{} \left(\frac{u-2}{\sqrt[4]{u}}\right)du \\[2ex] | |||
&=\int_{}^{} \left(\frac{u}{\sqrt[4](u)} - \frac{2}{\sqrt[4](u)}\right)du \\[2ex] | |||
&=\int_{}^{} \left(u^{\frac{3}{4}} - 2u^{-\frac{1}{u}} \right)du \\[2ex] | |||
&= \frac{4}{7} u^{\frac{7}{4}} - 2(\frac{4}{3})u^{\frac{3}{4}} + c \\[2ex] | |||
&= \frac{4}{7} (x+2)^{\frac{7}{4}} - \frac{8}{3} (x+2)^{\frac{3}{4}} +c \\[2ex] | |||
\end{align} | |||
</math> | </math> |
Latest revision as of 22:21, 7 September 2022