6.2 Trigonometric Functions: Unit Circle Approach/79: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 3: Line 3:
<math> \theta \rightarrow x=2, \, y=-3, \, r= \sqrt{13} </math><br><br>
<math> \theta \rightarrow x=2, \, y=-3, \, r= \sqrt{13} </math><br><br>


<math> -3^2 + 4^2 = 5^2 </math><br><br>
 
<math> 9 + 16 = 25 </math><br><br>
 
<math>\sqrt{25} = 5 = r </math><br><br>
<math>
<math>
\begin{align}
\begin{align}


\sin{(\theta)} &= \frac{4}{5} & \csc{(\theta)} &= -\frac{\sqrt{13}}{3}\\[2ex]
\sin{(\theta)} &= -\frac{3\sqrt{13}}{13} & \csc{(\theta)} &= -\frac{\sqrt{13}}{3}\\[2ex]


\cos{(\theta)} &= \frac{-3}{5} & \sec{(\theta)} &= \frac{5}{-3}\\[2ex]  
\cos{(\theta)} &= \frac{2\sqrt{13}}{13} & \sec{(\theta)} &= \frac{\sqrt{13}}{2}\\[2ex]  


\tan{(\theta)} &= \frac{-3}{2} & \cot{(\theta)} &= \frac{-2}{3} \\[2ex]
\tan{(\theta)} &= \frac{-3}{2} & \cot{(\theta)} &= \frac{-2}{3} \\[2ex]

Latest revision as of 16:12, 7 September 2022