6.5 Average Value of a Function/2: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
m (Protected "6.5 Average Value of a Function/2" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite))) |
||
(14 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<math> | <math> | ||
f(x) = \sin{(4x)}\text{,}\quad [-\pi, \pi | f(x) = \sin{(4x)}\text{,}\quad [-\pi, \pi] | ||
</math> | </math> | ||
< | |||
<math> | |||
\begin{align} | \begin{align} | ||
f_{avg} &= \frac{1}{\pi-(-\pi)}\int_{-\pi}^{\pi}\sin{(4x)}\,dx = \frac{1}{2\pi}\int_{-\pi}^{\pi}\sin{(4x)}\,dx \\[2ex] | f_{avg} &= \frac{1}{\pi-(-\pi)}\int_{-\pi}^{\pi}\sin{(4x)}\,dx = \frac{1}{2\pi}\int_{-\pi}^{\pi}\sin{(4x)}\,dx \\[2ex] | ||
&= \frac{1}{2\pi}\int_{-4\pi}^{4\pi}\sin{(u)}\frac{1}{4}\,du = \frac{1}{8\pi}\int_{-4\pi}^{4\pi}\sin(u)\,du \\[2ex] | &= \frac{1}{2\pi}\int_{-4\pi}^{4\pi}\sin{(u)}\left(\frac{1}{4}\,du\right) = \frac{1}{8\pi}\int_{-4\pi}^{4\pi}\sin(u)\,du \\[2ex] | ||
&= -\frac{1}{8\pi}\cos(u)\bigg|_{-4\pi}^{4\pi} \\[2ex] | &= -\frac{1}{8\pi}\cos(u)\bigg|_{-4\pi}^{4\pi} \\[2ex] | ||
&= \left[-\frac{1}{8\pi}\cos(4\pi)\right]-\left[-\frac{1}{8\pi}\cos(-4\pi)\right] | &= \left[-\frac{1}{8\pi}\cos(4\pi)\right]-\left[-\frac{1}{8\pi}\cos(-4\pi)\right] = \left[-\frac{1}{8\pi}(1)\right]+\left[\frac{1}{8\pi}(1)\right] \\[2ex] | ||
&= 0 | |||
\end{align} | \end{align} | ||
</math> | </math> | ||
U-Sub notes:<br> | |||
<math> | <math> | ||
\begin{align} | \begin{align} |
Latest revision as of 18:10, 7 September 2022
U-Sub notes:
New upper limit:
New lower limit: