6.2 Volumes/25: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(24 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<math> | |||
R = 1 | |||
</math> | |||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
r + f(y) &= 1\\[1ex] | |||
r &= 1-f(y)\\[1ex] | |||
r &= 1-y^2 \\ | |||
\end{align} | |||
</math> | |||
<math> | |||
\begin{align} | |||
\pi\int_0^1\left[(1)^2-(1-y^2)^2\right]dy & = \pi\int_0^1\left[(1-(1-2y^2+y^4)\right]dy = \pi\int_0^1\left[(2y^2-y^4)\right]dy \\[2ex] | \pi\int_0^1\left[(1)^2-(1-y^2)^2\right]dy & = \pi\int_0^1\left[(1-(1-2y^2+y^4)\right]dy = \pi\int_0^1\left[(2y^2-y^4)\right]dy \\[2ex] | ||
&= \pi\left[\frac{2y^3}{3}-\frac{y^5}{5}\right]\Bigg|_0^1 \\[2ex] | &= \pi\left[\frac{2y^3}{3}-\frac{y^5}{5}\right]\Bigg|_0^1 \\[2ex] | ||
&= \pi\left[\frac{2}{3}-\frac{1}{5}\right]= | &= \pi\left[\frac{2}{3}-\frac{1}{5}\right]= \pi\left[\frac{10}{15}-\frac{3}{15}\right] \\[2ex] | ||
&= \frac{7\pi}{15} | |||
\pi\left[\frac{10}{15}-\frac{3}{15}\right] = \frac{7\pi}{15} | |||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 15:28, 12 September 2022