6.2 Volumes/25: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(24 intermediate revisions by the same user not shown)
Line 1: Line 1:
<math>
R = 1
</math>
<math>
<math>
\begin{align}
\begin{align}
r + f(y) &= 1\\[1ex] 
r &= 1-f(y)\\[1ex]
r &= 1-y^2 \\
\end{align}
</math>


<math>
\begin{align}
\pi\int_0^1\left[(1)^2-(1-y^2)^2\right]dy & = \pi\int_0^1\left[(1-(1-2y^2+y^4)\right]dy = \pi\int_0^1\left[(2y^2-y^4)\right]dy \\[2ex]
\pi\int_0^1\left[(1)^2-(1-y^2)^2\right]dy & = \pi\int_0^1\left[(1-(1-2y^2+y^4)\right]dy = \pi\int_0^1\left[(2y^2-y^4)\right]dy \\[2ex]


&= \pi\left[\frac{2y^3}{3}-\frac{y^5}{5}\right]\Bigg|_0^1 \\[2ex]
&= \pi\left[\frac{2y^3}{3}-\frac{y^5}{5}\right]\Bigg|_0^1 \\[2ex]
&= \pi\left[\frac{2}{3}-\frac{1}{5}\right]= \\[2ex]
&= \pi\left[\frac{2}{3}-\frac{1}{5}\right]= \pi\left[\frac{10}{15}-\frac{3}{15}\right] \\[2ex]
 
&= \frac{7\pi}{15}
\pi\left[\frac{10}{15}-\frac{3}{15}\right] = \frac{7\pi}{15}


\end{align}
\end{align}
</math>
</math>

Latest revision as of 15:28, 12 September 2022