5.4 Indefinite Integrals and the Net Change Theorem/3: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
m (Protected "5.4 Indefinite Integrals and the Net Change Theorem/3" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite))) |
||
(8 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<math> | <math> | ||
\ | \int\cos^{3}xdx = \sin{x}-\frac{1}{3}\sin^{3}x+C | ||
</math> | |||
<math> | |||
\begin{align} | |||
& ={\cos{x} - \frac{1}{3}\cdot 3\sin^2{x} \cos{x} +0} \\[2ex] | \frac{d}{dx} {[\sin{x} - \frac{1}{3} \sin^3{x} +C]} &= {\cos{x} - \frac{1}{3}\cdot 3\sin^2{x} \cos{x} +0} \\[2ex] | ||
& =\cos{x} - \sin^2{x}\cos{x} \\[2ex] | & =\cos{x} - \sin^2{x}\cos{x} \\[2ex] | ||
& =\cos{x} - (1-cos^2 | & =\cos{x} - (1-cos^2{x})\cos{x} \\[2ex] | ||
& = \cos^3{x} | |||
\end{align} | |||
</math> | |||
Note: <math> | |||
\ | 1-\cos^2(x) = \sin^2(x) | ||
</math> | </math> |
Latest revision as of 19:38, 21 September 2022
Note: