5.4 Indefinite Integrals and the Net Change Theorem/11: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
m (Protected "5.4 Indefinite Integrals and the Net Change Theorem/11" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
 
(8 intermediate revisions by the same user not shown)
Line 2: Line 2:
\begin{align}
\begin{align}


\int\frac{x^3-2\sqrt{x}}{x}dx &= \int\left(\frac{x^3}{x}-\frac{2\sqrt{x}}{x}\right)dx = x^2-2x^\frac{-1}{2}dx =
\int\frac{x^3-2\sqrt{x}}{x}dx &= \int\left(\frac{x^3}{x}-\frac{2\sqrt{x}}{x}\right)dx = \int\left(x^2-2x^{\frac{1}{2}-1}\right)dx = \int\left(x^2-2x^{-\frac{1}{2}}\right)dx \\[2ex]
\frac{x^3}{3}-\frac{2x^\frac{1}{2}}{\frac{1}{2}}+C = \frac{1}{3}x^3-4\sqrt{x}+C
&= \frac{x^3}{3}-\frac{2x^\frac{1}{2}}{\frac{1}{2}}+C \\[2ex]
&= \frac{x^3}{3}-4\sqrt{x}+C


\end{align}
\end{align}
</math>
</math>

Latest revision as of 19:39, 21 September 2022