5.4 Indefinite Integrals and the Net Change Theorem/11: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
m (Protected "5.4 Indefinite Integrals and the Net Change Theorem/11" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite))) |
||
(One intermediate revision by the same user not shown) | |||
Line 4: | Line 4: | ||
\int\frac{x^3-2\sqrt{x}}{x}dx &= \int\left(\frac{x^3}{x}-\frac{2\sqrt{x}}{x}\right)dx = \int\left(x^2-2x^{\frac{1}{2}-1}\right)dx = \int\left(x^2-2x^{-\frac{1}{2}}\right)dx \\[2ex] | \int\frac{x^3-2\sqrt{x}}{x}dx &= \int\left(\frac{x^3}{x}-\frac{2\sqrt{x}}{x}\right)dx = \int\left(x^2-2x^{\frac{1}{2}-1}\right)dx = \int\left(x^2-2x^{-\frac{1}{2}}\right)dx \\[2ex] | ||
&= \frac{x^3}{3}-\frac{2x^\frac{1}{2}}{\frac{1}{2}}+C \\[2ex] | &= \frac{x^3}{3}-\frac{2x^\frac{1}{2}}{\frac{1}{2}}+C \\[2ex] | ||
&= \frac{ | &= \frac{x^3}{3}-4\sqrt{x}+C | ||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 19:39, 21 September 2022