5.4 Indefinite Integrals and the Net Change Theorem/17: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
m (Protected "5.4 Indefinite Integrals and the Net Change Theorem/17" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
 
(11 intermediate revisions by the same user not shown)
Line 2: Line 2:
\int(1+\tan^2{\alpha})\,d\alpha = \int\sec^2\alpha \,d\alpha = \tan\alpha + C
\int(1+\tan^2{\alpha})\,d\alpha = \int\sec^2\alpha \,d\alpha = \tan\alpha + C
</math>
</math>


Note: <math>1+\tan^2{\alpha} = \sec^2\alpha</math>
Note: <math>1+\tan^2{\alpha} = \sec^2\alpha</math>
Line 7: Line 8:


Or,
Or,


<math>
<math>


\int_{}^{}1+tan^2xdx =  
\int(1+\tan^2{\alpha})\,d\alpha = \int\left(1+\frac{sin^2\alpha}{cos^2\alpha}\right)d\alpha = \int\left(\frac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}\right)d\alpha  = \int\frac{1}{cos^2\alpha}\,d\alpha =  


\int_{}^{}1+\frac{sin^2x}{cos^2x}dx =
\int\sec^2\alpha \,d\alpha = \tan{\alpha}+C
</math>


\int_{}^{}\frac{cos^2x+sin^2x}{cos^2x}dx


\cos^2x+sin^2x=1
Note: <math>\cos^2\alpha+sin^2\alpha=1</math>
 
\int_{}^{}\frac{1}{cos^2x}dx =
 
\int_{}^{}\sec^2xdx =
 
tanx+C
</math>

Latest revision as of 19:39, 21 September 2022


Note:


Or,



Note: