5.4 Indefinite Integrals and the Net Change Theorem/17: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
m (Protected "5.4 Indefinite Integrals and the Net Change Theorem/17" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
 
(6 intermediate revisions by the same user not shown)
Line 8: Line 8:


Or,
Or,


<math>
<math>


\int(1+\tan^2{\alpha})\,d\alpha = \int\left(1+\frac{sin^2\alpha}{cos^2\alpha}\right)d\alpha = \int\left(\frac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}\right)d\alpha  
\int(1+\tan^2{\alpha})\,d\alpha = \int\left(1+\frac{sin^2\alpha}{cos^2\alpha}\right)d\alpha = \int\left(\frac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}\right)d\alpha = \int\frac{1}{cos^2\alpha}\,d\alpha =


\cos^2x+sin^2x=1
\int\sec^2\alpha \,d\alpha = \tan{\alpha}+C
 
</math>
\int\frac{1}{cos^2x}dx =


\int\sec^2xdx =


\tan{x}+C
Note: <math>\cos^2\alpha+sin^2\alpha=1</math>
</math>

Latest revision as of 19:39, 21 September 2022


Note:


Or,



Note: