5.5 The Substitution Rule/13: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
(Created page with "<math> \int \frac{\sin{(\ln{(x))}}}{x}dx </math> <math> \begin{align} u &=\ln(x) \\[2ex] du &= \frac{1}{x}dx \\[2ex] \end{align} </math> <math> \begin{align} \int \frac{\sin{(\ln{(x))}}}{x}dx &= \int\frac{1}{x}\sin(\ln{(x)})dx = \int\left(\frac{1}{x}dx\right)\sin{(\ln{(x)})} \\[2ex] &= \int (du)\sin{(u)} = \int \sin{(u)}du \\[2ex] &= -\cos{(u)} + C \\[2ex] &= -\cos{(\ln{(x)})} + C \end{align} </math>")
 
No edit summary
 
(47 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<math>
<math>
\int \frac{\sin{(\ln{(x))}}}{x}dx
\int \frac{dx}{5-3x} \text{,} \quad u=5-3x
</math>
</math>


<math>
<math>
\begin{align}
\begin{align}


u &=\ln(x) \\[2ex]
u &=5-3x \\[2ex]
du &= \frac{1}{x}dx \\[2ex]
du &=-3dx \\[2ex]
-\frac{1}{3}du &=dx  


\end{align}
\end{align}
Line 17: Line 17:
\begin{align}
\begin{align}


\int \frac{\sin{(\ln{(x))}}}{x}dx &= \int\frac{1}{x}\sin(\ln{(x)})dx = \int\left(\frac{1}{x}dx\right)\sin{(\ln{(x)})} \\[2ex]
\int \frac{dx}{5-3x} &= -\frac{1}{3}\int \left(\frac{1}{u}\right)du \\[2ex]
 
&=-\frac{1}{3}\ln{|u|} du \\[2ex]
&= \int (du)\sin{(u)} = \int \sin{(u)}du \\[2ex]
&=-\frac{1}{3}\ln{|5-3x|}+C
&= -\cos{(u)} + C \\[2ex]
&= -\cos{(\ln{(x)})} + C


\end{align}
\end{align}
</math>
</math>

Latest revision as of 19:53, 22 September 2022