6.1 Areas Between Curves/18: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary Tag: Manual revert |
||
(4 intermediate revisions by the same user not shown) | |||
Line 32: | Line 32: | ||
\int_{-3}^{-2}\left((x^2)-(8-x^2)\right)dx &= \int_{-3}^{-2}\left(2x^2-8)\right)dx \\[2ex] | \int_{-3}^{-2}\left((x^2)-(8-x^2)\right)dx &= \int_{-3}^{-2}\left(2x^2-8)\right)dx \\[2ex] | ||
&= \left[\frac{2x^3}{3}-8x\right]\ | &= \left[\frac{2x^3}{3}-8x\right]\Bigg|_{-3}^{-2} \\[2ex] | ||
&= \left[\frac{2(-2)^3}{3}-8(-2)\right]-\left[\frac{2(-3)^3}{3}-8(-3)\right] \\[2ex] | &= \left[\frac{2(-2)^3}{3}-8(-2)\right]-\left[\frac{2(-3)^3}{3}-8(-3)\right] \\[2ex] | ||
Line 49: | Line 49: | ||
\int_{-2}^{2} \left((8-x^2) - (x^2)\right)dx &= \int_{-2}^{2}\left(8-2x^2\right)dx \\[2ex] | \int_{-2}^{2} \left((8-x^2) - (x^2)\right)dx &= \int_{-2}^{2}\left(8-2x^2\right)dx \\[2ex] | ||
&= \left[8x-\frac{2x^3}{3}\right]\Bigg|_{-2}^{2} \\[2ex] | &= \left[8x-\frac{2x^3}{3}\right]\Bigg|_{-2}^{2} \\[2ex] | ||
&= \left[8(2)-\frac{2(2)^3}{3}\right] - \left | &= \left[8(2)-\frac{2(2)^3}{3}\right] - \left[8(-2)-\frac{2(-2)^3}{3}\right] \\[2ex] | ||
&= \left[16-\frac{16}{3}\right]-\left | &= \left[16-\frac{16}{3}\right]-\left[-16+\frac{16}{3}\right] = 32-\frac{32}{3} \\[2ex] | ||
&= \frac{64}{3} | &= \frac{64}{3} | ||
\end{align} | \end{align} | ||
</math> | </math> |