6.1 Areas Between Curves/23: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(32 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
[[File:23.png]] | |||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
Line 22: | Line 24: | ||
<math> | <math> | ||
\int_{0}^{\frac{\pi}{6}} \left(\cos(x) - \sin(2x) \right)dx + \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \left(\sin(2x)- \cos(x) \right)dx | \int_{0}^{\frac{\pi}{6}} \left(\cos(x) - \sin(2x) \right)dx + \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \left(\sin(2x)- \cos(x) \right)dx = \frac{1}{4}+\frac{1}{4} = \frac{2}{4} = \frac{1}{2} | ||
</math> | |||
<math> | |||
\begin{align} | |||
\int_{0}^{\frac{\pi}{6}} \left(\cos(x) - \sin(2x) \right)dx &= \left[\sin(x)+\frac{1}{2}\cos(2x) \right]\Bigg|_{0}^{\frac{\pi}{6}} \\[2ex] | |||
&= \left[\sin(\frac{\pi}{6})+\frac{1}{2}\cos(\frac{2\pi}{6})\right]-\left[\sin(0)+\frac{1}{2}\cos(2(0))\right] \\[2ex] | |||
&= \left[\frac{1}{2}+\frac{1}{2}\left(\frac{1}{2}\right)\right]-\left[0-\frac{1}{2} (1)\right] \\[2ex] | |||
&= \frac{1}{2}+\frac{1}{4}-\frac{1}{2} \\ | |||
&= \frac{1}{4} | |||
\end{align} | |||
</math> | </math> | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
\int_{ | \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \left[\sin(2x)-\cos(x)\right]dx &= \left[-\frac{1}{2}\cos(2x) - \sin(x) \right]\Bigg|_{\frac{\pi}{6}}^{\frac{\pi}{2}} \\ [2ex] | ||
&= \left[\sin( | &= \left[-\frac{1}{2}\cos(\frac{2\pi}{2})-\sin(\frac{\pi}{2})\right] - \left[-\frac{1}{2}\cos(\frac{2\pi}{6}) - \sin(\frac{\pi}{6})\right] \\[2ex] | ||
&= \left[-\frac{1}{2}\left(-1\right)-1\right]-\left[-\frac{1}{2}\left(\frac{1}{2}\right)-\frac{1}{2}\right]\\ | |||
&= \frac{1}{2}-1+\frac{1}{4}+\frac{1}{2} \\ | |||
&= \frac{1}{4} | |||
\end{align} | \end{align} | ||
</math> | </math> |