6.1 Areas Between Curves/23: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[File:23.png]]
<math>  
<math>  
\begin{align}
\begin{align}
Line 22: Line 24:


<math>
<math>
\int_{0}^{\frac{\pi}{6}} \left(\cos(x) - \sin(2x) \right)dx + \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \left(\sin(2x)- \cos(x) \right)dx
\int_{0}^{\frac{\pi}{6}} \left(\cos(x) - \sin(2x) \right)dx + \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \left(\sin(2x)- \cos(x) \right)dx = \frac{1}{4}+\frac{1}{4} = \frac{2}{4} = \frac{1}{2}
</math>
</math>


Line 31: Line 33:
&= \left[\sin(\frac{\pi}{6})+\frac{1}{2}\cos(\frac{2\pi}{6})\right]-\left[\sin(0)+\frac{1}{2}\cos(2(0))\right] \\[2ex]
&= \left[\sin(\frac{\pi}{6})+\frac{1}{2}\cos(\frac{2\pi}{6})\right]-\left[\sin(0)+\frac{1}{2}\cos(2(0))\right] \\[2ex]
&= \left[\frac{1}{2}+\frac{1}{2}\left(\frac{1}{2}\right)\right]-\left[0-\frac{1}{2} (1)\right] \\[2ex]
&= \left[\frac{1}{2}+\frac{1}{2}\left(\frac{1}{2}\right)\right]-\left[0-\frac{1}{2} (1)\right] \\[2ex]
&= \frac{1}{2}+\frac{1}{4}-\left[0+\frac{1}{2}\right] \\
&= \frac{1}{2}+\frac{1}{4}-\frac{1}{2} \\
&= \frac{1}{4}
&= \frac{1}{4}



Latest revision as of 02:24, 20 September 2022

23.png