6.1 Areas Between Curves/10: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
Tag: Manual revert
No edit summary
Tag: Manual revert
 
(29 intermediate revisions by the same user not shown)
Line 4: Line 4:
\begin{align}
\begin{align}


& \color{red}\mathbf{y=1+\sqrt{x}}  
& \color{green}\mathbf{y=1+\sqrt{x}}  
& \color{royalblue}\mathbf{y=\frac{3+x}{3}} \\
& \color{purple}\mathbf{y=\frac{3+x}{3}} \\
\\
\\


Line 15: Line 15:
\begin{align}
\begin{align}
&1+\sqrt{x} = \frac{3+x}{3} \\
&1+\sqrt{x} = \frac{3+x}{3} \\
&= 1+\sqrt{x}-\frac{3+x}{3} = 0 \\
 
&= \frac{3+3\sqrt{x}}{3}-\frac{3+x}{3} = 0 \\
& 1+\sqrt{x}-\frac{3+x}{3} = 0 \\
&= 3+3\sqrt{x}-3+x = 0 \\
 
&= 3\sqrt{x}+x = 0 \\
& \frac{3+3\sqrt{x}}{3}-\frac{3+x}{3} = 0 \\
&= 3\sqrt{x} = -x \\
 
&= 9x = x^2 \\
& 3+3\sqrt{x}-3+x = 0 \\
&= 9x-x^2 = 0 \\
 
&= x(9-x) = 0 \\
& 3\sqrt{x}+x = 0 \\
&= x = 0,9  
 
& 3\sqrt{x} = -x \\
 
& 9x = x^2 \\
 
& 9x-x^2 = 0 \\
 
& x(9-x) = 0 \\
 
& x = 0,9  
\end{align}
\end{align}
</math>
</math>
<math> \int_{0}^{9} \left(1+\sqrt{x} - \frac{3+x}{3}\right)dx = \left[x + \frac{2x^\frac{3}{2}}3\right]\Bigg|_{0}^{9} - \frac{1}3\int_{0}^{9}\left(3+x\right)dx = \left[x + \frac{2x^\frac{3}{2}}3\right]\Bigg|_{0}^{9} - \left[\frac{{1}}3(\frac{{x^2}}3+3x)\right]\Bigg|_{0}^{9} = 9 + \frac{{2(27)}}3 - \frac{{9^2}}6 - 9 = \frac{54}3 -  \frac{81}6 = \frac{108}6 - \frac{81}6 = \frac{27}6 =  \frac{9}2  </math>

Latest revision as of 19:57, 20 September 2022

Desmos-graphs.png