5.5 The Substitution Rule/61: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(31 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<math>\ int_{0}^{13}\frac{dx}{sqrt[3](1+2x)^2/<math>
<math>
\int_{0}^{13}\frac{1}{\sqrt[3]{(1+2x)^2}}\,dx
</math>
 
 
<math>
\begin{align}
 
u &= 1+2x \\[2ex]
du &= 2dx \\[2ex]
\frac{1}{2}du &= dx \\[2ex]
 
\end{align}
</math>
 
 
New upper limit: <math>27 = 1+2(13)</math><br>
New lower limit: <math>1 = 1+2(0)</math>
 
<math>
\begin{align}
 
\int_{0}^{13}\frac{1}{\sqrt[3]{(1+2x)^2}}\,dx &= \int_{0}^{13}\frac{1}{\sqrt[3]{(1+2x)^2}}\,(dx) \\[2ex]
&= \int_{1}^{27}\frac{1}{\sqrt[3]{u^2}}\left(\frac{1}{2}du\right) = \frac{1}{2}\int_{1}^{27} {u}^{-2/3}du \\[2ex]
&= \frac{1}{2}\frac{{u}^{1/3}}{\frac{1}{3}}\bigg|_{1}^{27} = \frac{3}{2}{u}^{1/3}\bigg|_{1}^{27}\\[2ex]
&= \frac{3}{2}{(27)}^{1/3} - \frac{3}{2}{(1)}^{1/3} \\[2ex]
&= \frac{9}{2}-\frac{3}{2}\\[2ex]
&= 3
 
\end{align}
</math>

Latest revision as of 04:20, 22 September 2022



New upper limit:
New lower limit: