5.5 The Substitution Rule/61: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(21 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<math>\int_{0}^{13}\frac{ | <math> | ||
\int_{0}^{13}\frac{1}{\sqrt[3]{(1+2x)^2}}\,dx | |||
= <math>\frac{1}{2}\int_{0}^{13}\frac{1}{\sqrt[3]{ | </math> | ||
= | |||
= | |||
= | <math> | ||
= | \begin{align} | ||
u &= 1+2x \\[2ex] | |||
du &= 2dx \\[2ex] | |||
\frac{1}{2}du &= dx \\[2ex] | |||
\end{align} | |||
</math> | |||
New upper limit: <math>27 = 1+2(13)</math><br> | |||
New lower limit: <math>1 = 1+2(0)</math> | |||
<math> | |||
\begin{align} | |||
\int_{0}^{13}\frac{1}{\sqrt[3]{(1+2x)^2}}\,dx &= \int_{0}^{13}\frac{1}{\sqrt[3]{(1+2x)^2}}\,(dx) \\[2ex] | |||
&= \int_{1}^{27}\frac{1}{\sqrt[3]{u^2}}\left(\frac{1}{2}du\right) = \frac{1}{2}\int_{1}^{27} {u}^{-2/3}du \\[2ex] | |||
&= \frac{1}{2}\frac{{u}^{1/3}}{\frac{1}{3}}\bigg|_{1}^{27} = \frac{3}{2}{u}^{1/3}\bigg|_{1}^{27}\\[2ex] | |||
&= \frac{3}{2}{(27)}^{1/3} - \frac{3}{2}{(1)}^{1/3} \\[2ex] | |||
&= \frac{9}{2}-\frac{3}{2}\\[2ex] | |||
&= 3 | |||
\end{align} | |||
</math> |
Latest revision as of 04:20, 22 September 2022
New upper limit:
New lower limit: