6.1 Areas Between Curves/10: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary Tag: Manual revert |
||
Line 37: | Line 37: | ||
<math> \int_{0}^{9} \left(1+\sqrt{x} - \frac{3+x}{3}\right)dx = \left[x + \frac{2x^\frac{3}{2}}3\right]\Bigg|_{0}^{9} - \frac{1}3\int_{0}^{9}\left(3+x\right)dx | <math> \int_{0}^{9} \left(1+\sqrt{x} - \frac{3+x}{3}\right)dx = \left[x + \frac{2x^\frac{3}{2}}3\right]\Bigg|_{0}^{9} - \frac{1}3\int_{0}^{9}\left(3+x\right)dx = \left[x + \frac{2x^\frac{3}{2}}3\right]\Bigg|_{0}^{9} - \left[\frac{{1}}3(\frac{{x^2}}3+3x)\right]\Bigg|_{0}^{9} = 9 + \frac{{2(27)}}3 - \frac{{9^2}}6 - 9 = \frac{54}3 - \frac{81}6 = \frac{108}6 - \frac{81}6 = \frac{27}6 = \frac{9}2 </math> | ||
= \left[x + \frac{2x^\frac{3}{2}}3\right]\Bigg|_{0}^{9} - \left[\frac{{1}}3(\frac{{x^2}}3+3x)\right]\Bigg|_{0}^{9} = 9 + \frac{{2(27)}}3 - \frac{{9^2}}6 - 9 = \frac{54}3 - \frac{81}6 = \frac{108}6 - \frac{81}6 = \frac{27}6 = \frac{9}2 </math> |