5.4 Indefinite Integrals and the Net Change Theorem/23: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
m (Protected "5.4 Indefinite Integrals and the Net Change Theorem/23" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
 
(One intermediate revision by the same user not shown)
Line 2: Line 2:
\begin{align}
\begin{align}
\int_{-1}^{0}(2x-e^x)dx &=\left[\frac{2x^2}{2}-e^x\right]_{-1}^{0} \\[2ex]
\int_{-1}^{0}(2x-e^x)dx &=\left[\frac{2x^2}{2}-e^x\right]_{-1}^{0} \\[2ex]
&= [0-e^{0}]-[(-1)^2-e^{-1}] \\[2ex]
&= [0^{2}-e^{0}]-[(-1)^2-e^{-1}] \\[2ex]
&=-1-\left(1-\frac{1}{e}\right) \\[2ex]
&=-1-\left(1-\frac{1}{e}\right) \\[2ex]
&=\frac{1}{e}-2
&=\frac{1}{e}-2

Latest revision as of 19:40, 21 September 2022