5.4 Indefinite Integrals and the Net Change Theorem/29: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
m (Protected "5.4 Indefinite Integrals and the Net Change Theorem/29" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite))) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
\int_{-2}^{-1}\left(4y^3+\frac{2}{y^3}\right)dy &= \int_{-2}^{-1}\left(4y^3+2y^{-3}\right)dy\\[2ex] | \int_{-2}^{-1}\left(4y^3+\frac{2}{y^3}\right)dy &= \int_{-2}^{-1}\left(4y^3+2y^{-3}\right)dy\\[2ex] | ||
&= \left[y^4-y^-2\right]_{-2}^{-1} \\[2ex] | &= \left[y^{4}-y^{-2}\right]_{-2}^{-1} \\[2ex] | ||
&= (1-1)-\left(16-\frac{1}{4}\right) \\[2ex] | &= (1-1)-\left(16-\frac{1}{4}\right) \\[2ex] | ||
&= \frac{ | &= -\frac{63}{4} | ||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 19:40, 21 September 2022