5.4 Indefinite Integrals and the Net Change Theorem/37: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
m (Protected "5.4 Indefinite Integrals and the Net Change Theorem/37" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite))) |
||
(13 intermediate revisions by the same user not shown) | |||
Line 4: | Line 4: | ||
\int_{0}^{\frac{\pi}{4}}\left(\frac{1+\cos^2(\theta)}{\cos^2(\theta)}\right)d\theta | \int_{0}^{\frac{\pi}{4}}\left(\frac{1+\cos^2(\theta)}{\cos^2(\theta)}\right)d\theta | ||
&= \int_{0}^{\frac{\pi}{4}}\left(\frac{1}{\cos^2(\theta)} + \frac{\cos^2(\theta)}{\cos^2(\theta)}\right)d\theta | &= \int_{0}^{\frac{\pi}{4}}\left(\frac{1}{\cos^2(\theta)} + \frac{\cos^2(\theta)}{\cos^2(\theta)}\right)d\theta | ||
= \int_{0}^{\frac{\pi}{4}}\left(\sec^2(\theta) + 1\right)d\theta \\[2ex] | |||
& =\tan({\theta}) + \theta \ | &= (\tan({\theta}) + \theta)\Bigg|_{0}^{\frac{\pi}{4}}\\[2ex] | ||
&= \left[\tan\left({\frac{\pi}{4}}\right) + \frac{\pi}{4}\right] - \left[\tan{0} + 0\right] \\[2ex] | |||
&= 1+\frac{\pi}{4} | |||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 19:41, 21 September 2022