5.4 Indefinite Integrals and the Net Change Theorem/37: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
m (Protected "5.4 Indefinite Integrals and the Net Change Theorem/37" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
 
(2 intermediate revisions by the same user not shown)
Line 6: Line 6:
= \int_{0}^{\frac{\pi}{4}}\left(\sec^2(\theta) + 1\right)d\theta \\[2ex]
= \int_{0}^{\frac{\pi}{4}}\left(\sec^2(\theta) + 1\right)d\theta \\[2ex]


&= \left\tan({\theta}) + \theta \right]\Bigg|_{0}^{\frac{\pi}{4}}\\[2ex]
&= (\tan({\theta}) + \theta)\Bigg|_{0}^{\frac{\pi}{4}}\\[2ex]


&= \left[\tan\left({\frac{\pi}{4}}\right) + \frac{\pi}{4}\right] - \left[\tan{0} + 0\right] \\[2ex]
&= \left[\tan\left({\frac{\pi}{4}}\right) + \frac{\pi}{4}\right] - \left[\tan{0} + 0\right] \\[2ex]

Latest revision as of 19:41, 21 September 2022