5.4 Indefinite Integrals and the Net Change Theorem/39: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
m (Protected "5.4 Indefinite Integrals and the Net Change Theorem/39" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite))) |
||
(6 intermediate revisions by the same user not shown) | |||
Line 7: | Line 7: | ||
&= \left[\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+ \frac{x^{\frac{5}{6}}}{\frac{5}{6}}\right]_{1}^{64} = \left[2x^\frac{1}{2} + \frac{6}{5}x^\frac{5}{6}\right]_{1}^{64} \\[2ex] | &= \left[\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+ \frac{x^{\frac{5}{6}}}{\frac{5}{6}}\right]_{1}^{64} = \left[2x^\frac{1}{2} + \frac{6}{5}x^\frac{5}{6}\right]_{1}^{64} \\[2ex] | ||
&= 2( | &= \left[2(64)^\frac{1}{2} + \frac{6}{5}(64)^\frac{5}{6}\right] - \left[(2(1)^\frac{1}{2} + \frac{6}{5}(1)^\frac{5}{6})\right] \\[2ex] | ||
&= \left[2\cdot8 + \frac{6}{5}(2)^5\right] - \left[2+\frac{6}{5}\right] = \left[16+\frac{192}{5}\right] - \left[\frac{16}{5}\right] = \left[\frac{80}{5} + \frac{192}{5}\right] - \left[\frac{16}{5}\right]\\[2ex] | |||
&= \frac{256}{5} | |||
\end{align} | \end{align} | ||
</math> | </math> | ||
Latest revision as of 19:41, 21 September 2022