5.4 Indefinite Integrals and the Net Change Theorem/39: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
m (Protected "5.4 Indefinite Integrals and the Net Change Theorem/39" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
 
(2 intermediate revisions by the same user not shown)
Line 8: Line 8:


&= \left[2(64)^\frac{1}{2} + \frac{6}{5}(64)^\frac{5}{6}\right] - \left[(2(1)^\frac{1}{2} + \frac{6}{5}(1)^\frac{5}{6})\right] \\[2ex]
&= \left[2(64)^\frac{1}{2} + \frac{6}{5}(64)^\frac{5}{6}\right] - \left[(2(1)^\frac{1}{2} + \frac{6}{5}(1)^\frac{5}{6})\right] \\[2ex]
&= \left[2\cdot8 + \frac{6}{5}(2)^5\right] - \left[2+\frac{6}{5}\right] = \left[16+\frac{192}{5}\right] - \left[\frac{16}{5}\right] = \left[\frac{80}{5} + \frac{192}{5}\right] - \left[\frac{16}{5}\right]\\[2ex]


&= \frac{256}{5}
&= \frac{256}{5}

Latest revision as of 19:41, 21 September 2022