5.5 The Substitution Rule/11: Difference between revisions
Jump to navigation
Jump to search
(Created page with "<math> \int (x+1)\sqrt{2x+x^{2}}dx </math> <math> \begin{align} u &=2x+x^{2} \\[2ex] du &=2+2x dx \\[2ex] \frac{1}{2}du &=x+1 \end{align} </math>") |
No edit summary |
||
(21 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
\int (x+1)\sqrt{2x+x^{2}}dx | \int (x+1)\sqrt{2x+x^{2}}dx | ||
</math> | </math> | ||
<math> | <math> | ||
Line 9: | Line 10: | ||
du &=2+2x dx \\[2ex] | du &=2+2x dx \\[2ex] | ||
\frac{1}{2}du &=x+1 | \frac{1}{2}du &=x+1 | ||
\end{align} | |||
</math> | |||
<math> | |||
\begin{align} | |||
\int (x+1)\sqrt{2x+x^{2}}dx &= \frac{1}{2}\int\sqrt{u}du = \frac{1}{2}\int u^{\frac{1}{2}}du \\[2ex] | |||
&= \frac{1}{2}({\frac{2u^\frac{3}{2}}{3}}) + C \\[2ex] | |||
&= \frac{1}{3}(u^{\frac{3}{2}}) + C \\[2ex] | |||
&= \frac{1}{3}(2x+x^{2})^{\frac{3}{2}} + C \\[2ex] | |||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 21:28, 22 September 2022