5.5 The Substitution Rule/55: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(7 intermediate revisions by the same user not shown) | |||
Line 7: | Line 7: | ||
\begin{align} | \begin{align} | ||
u &= \frac{t}{4} | u &= \frac{t}{4} \\[2ex] | ||
du &= \frac{1}{4}dt | du &= \frac{1}{4}dt \\[2ex] | ||
4du &=dx | 4du &=dx | ||
Line 18: | Line 18: | ||
\begin{align} | \begin{align} | ||
\int_{0}^ | \int_{0}^{\pi} \sec^2\left(\frac{t}{4}\right)dt | ||
&= 4\int_{0}^{\pi} \sec^2(u)du \\[2ex] | |||
= 4\int_{0}^{\pi} \sec^2(u)du \\[2ex] | &= 4\cdot \tan^2(u) = 4\cdot \tan^2\left(\frac{t}{4}\right)\bigg|_{0}^{\pi} \\[2ex] | ||
&= 4\cdot \tan^2\left(\frac{\pi}{4}\right)-4\cdot \tan^2\left(\frac{0}{4}\right) \\[2ex] | |||
= 4\cdot \tan^2( | &= 4-0 \\[2ex] | ||
&= 4 | |||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 16:19, 4 October 2022