5.4 Indefinite Integrals and the Net Change Theorem/1: Difference between revisions
Jump to navigation
Jump to search
(Created page with "<math>\int\frac{x}{\sqrt{x^2+1}}dx=\sqrt{x^2+1}+c</math> <math>\frac{d}{dx}\left[(x^2+1)^\frac{1}{2}+c\right]= \frac{x}{\sqrt{x^2+1}}</math> let <math>a=x^2+1</math> and <math>b=a^{1/2}</math> then <math>\frac{da}{dx}=2x \text{ and } \frac{db}{da}=\frac{1}{2}a^{-1/2}</math> <math>\frac{da}{dx}\frac{db}{da} = 2x\frac{1}{2}a^{-1/2} = xa^{-1/2} = x(x^2+1)^{-1/2} = \frac{x}{\sqrt{x^2+1}}</math>") |
m (Protected "5.4 Indefinite Integrals and the Net Change Theorem/1" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite))) |
||
(30 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<math>\int\frac{x}{\sqrt{x^2+1}}dx=\sqrt{x^2+1}+c</math> | <math>\int\frac{x}{\sqrt{x^2+1}}dx=\sqrt{x^2+1}+c</math><br> | ||
<math>\frac{d}{dx}\left[(x^2+1)^\frac{1}{2}+c\right]= \frac{x}{\sqrt{x^2+1}}</math> | Show that: <math>\frac{d}{dx}\left[(x^2+1)^\frac{1}{2}+c\right]= \frac{x}{\sqrt{x^2+1}}</math> | ||
<br> | |||
<math>\begin{align} | |||
a &= x^2+1 & b &= a^{1/2} \\[0.6ex] | |||
\frac{da}{dx} &=2x & \frac{db}{da} &=\frac{1}{2}a^{-1/2} | |||
\end{align}</math> | |||
<br><br> | |||
<math>\frac{da}{dx}\frac{db}{da} = 2x\frac{1}{2}a^{-1/2} = xa^{-1/2} = x(x^2+1)^{-1/2} = \frac{x}{\sqrt{x^2+1}}</math> | <math>\frac{da}{dx}\cdot\frac{db}{da} = \left(2x\right)\left(\frac{1}{2}a^{-1/2}\right) = xa^{-1/2} = x(x^2+1)^{-1/2} = \frac{x}{\sqrt{x^2+1}}</math> |
Latest revision as of 18:24, 26 August 2022
Show that: