5.3 The Fundamental Theorem of Calculus/9: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<math>g(y)= \int_{y}^{2}t^2\sin{(t)}dt = 1(y^{2}sin{(y)})-0(2^{2}sin{(2)})= y^{2} sin{(y)} </math> | <math>\begin{align} | ||
g(y)= \int_{y}^{2}t^2\sin{(t)}dt \\[2ex] | |||
&= 1(y^{2}sin{(y)})-0(2^{2}sin{(2)}) | |||
&= y^{2} sin{(y)} | |||
\end(align)</math> |
Revision as of 18:48, 25 August 2022
Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} g(y)= \int_{y}^{2}t^2\sin{(t)}dt \\[2ex] &= 1(y^{2}sin{(y)})-0(2^{2}sin{(2)}) &= y^{2} sin{(y)} \end(align)}