5.3 The Fundamental Theorem of Calculus/10: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 4: Line 4:
&\g(r)=\int_{0}^{r}\sqrt{x^2+4}dx\\[2ex]
&\g(r)=\int_{0}^{r}\sqrt{x^2+4}dx\\[2ex]


&\frac{d}{dx}\int_{0}^{r}\sqrt{x^2+4}dx\\[2ex]
&\cfrac{d}{dx}\int_{0}^{r}\sqrt{x^2+4}dx\\[2ex]


&\sqrt{x^2+4}
&\sqrt{x^2+4}

Revision as of 19:22, 25 August 2022

Failed to parse (unknown function "\g"): {\displaystyle \begin{align} &\g(r)=\int_{0}^{r}\sqrt{x^2+4}dx\\[2ex] &\cfrac{d}{dx}\int_{0}^{r}\sqrt{x^2+4}dx\\[2ex] &\sqrt{x^2+4} \end{align} }