5.3 The Fundamental Theorem of Calculus/35: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
\begin{align} | \begin{align} | ||
\int_{1}^{9}\frac{1}{2x}dx = \frac{1}{2}\int_{1}^{9}\frac{1}{x}dx | \int_{1}^{9}\frac{1}{2x}dx &= \frac{1}{2}\int_{1}^{9}\frac{1}{x}dx | ||
&= \frac{1}{2}\ln{|x|}\bigg|_{1}^{9} = \frac{1}{2}\ln{|9|}-\frac{1}{2}\ln{|1|} = \ln{|9^{\frac{1}{2}}|} - \ln{|1^{\frac{1}{2}}|} = \ln{3}-0 = \ln{3} | &= \frac{1}{2}\ln{|x|}\bigg|_{1}^{9} = \frac{1}{2}\ln{|9|}-\frac{1}{2}\ln{|1|} | ||
&= \ln{|9^{\frac{1}{2}}|} - \ln{|1^{\frac{1}{2}}|} = \ln{3}-0 = \ln{3} | |||
\end {align} | \end {align} | ||
</math> | </math> |
Revision as of 19:36, 25 August 2022