5.3 The Fundamental Theorem of Calculus/25: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Tag: Manual revert
Line 3: Line 3:
\int_{1}^{2}\left(\frac{3}{t^4}\right)dt &= \int_{1}^{2}\left(3t^{-4}\right)\,dt \\[2ex]
\int_{1}^{2}\left(\frac{3}{t^4}\right)dt &= \int_{1}^{2}\left(3t^{-4}\right)\,dt \\[2ex]
&= \frac{3t^{-4}{-3\bigg|_{1}^{2} = -t^{-3} \bigg|_{1}^{2} \\
&= \frac{3t^{-4}{-3\bigg|_{1}^{2} = -t^{-3} \bigg|_{1}^{2} \\
&= \left[-(2)^{-3}\right]-\left[-(1)^{-3}\right] \\[2ex]
&= \left[-(2)^-3\right]-\left[-(1)^{-3}\right] \\[2ex]
&= 1+\frac{-1}{8} = \frac{7}{8}
&= 1+\frac{-1}{8} = \frac{7}{8}
\end{align}
\end{align}

Revision as of 20:05, 25 August 2022

Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int_{1}^{2}\left(\frac{3}{t^4}\right)dt &= \int_{1}^{2}\left(3t^{-4}\right)\,dt \\[2ex] &= \frac{3t^{-4}{-3\bigg|_{1}^{2} = -t^{-3} \bigg|_{1}^{2} \\ &= \left[-(2)^-3\right]-\left[-(1)^{-3}\right] \\[2ex] &= 1+\frac{-1}{8} = \frac{7}{8} \end{align} }


\int_{1}^{2}\left(\frac{3}{t^4}\right)dt = \int_{1}^{2}\left(\{3t^-4}\right) \\

&= \frac{3t^-4}{-3}\bigg|_{1}^{2} = -t^-3 \bigg|_{1}^{2} \\

&= \left[-(2)^-3\right]-\left[-(1)^-3\right] \\[2ex]

&= 1+\frac{-1}{8} = \frac{7}{8}