5.3 The Fundamental Theorem of Calculus/25: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
\int_{1}^{2}\left(\frac{3}{t^4}\right)dt &= \int_{1}^{2}\left(3t^{-4}\right)\,dt \\[2ex] | \int_{1}^{2}\left(\frac{3}{t^4}\right)dt &= \int_{1}^{2}\left(3t^{-4}\right)\,dt \\[2ex] | ||
&= \frac{3t^{-4}}{- | |||
&= \frac{3t^{-4+1}}{-4+1}\bigg|_{1}^{2} = -t^{-3} \bigg|_{1}^{2} \\[2ex] | |||
&= \left[-(2)^{-3}\right]-\left[-(1)^{-3}\right] \\[2ex] | &= \left[-(2)^{-3}\right]-\left[-(1)^{-3}\right] \\[2ex] | ||
&= | |||
&= \left[-\frac{1}{8}\right]+[1] = \frac{7}{8} | |||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 21:00, 6 September 2022