5.3 The Fundamental Theorem of Calculus/27: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
<math>\int_2^0 (2x+x^6)dx</math><br> | <math>\int_2^0 (2x+x^6)dx</math><br> | ||
<math>= \left(\frac{2x^2}{1+1}+\frac{x^6+1}{6+1}\right)\bigg|_{0}^{2}=\left(x^2+\frac{x^7}{7}\right)\bigg|_{0}^{2}</math><br> | <math>= \left(\frac{2x^2}{1+1}+\frac{x^6+1}{6+1}\right)\bigg|_{0}^{2}=\left(x^2+\frac{x^7}{7}\right)\bigg|_{0}^{2}</math><br> | ||
<math>= \left((2)^2+\frac{(2)}^7{7}\right)-\left(0^2)+\frac{0^7}{7}</math> | <math>= \left((2)^2+\frac{(2)}^7{7}\right)-\left(0^2)+\frac{0^7}{7}\right)</math> | ||
{\displaystyle = \left((2)^2+\frac{(2)}^7{7}\right)-\left((0)^2)+} | {\displaystyle = \left((2)^2+\frac{(2)}^7{7}\right)-\left((0)^2)+} |
Revision as of 20:15, 25 August 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle = \left((2)^2+\frac{(2)}^7{7}\right)-\left(0^2)+\frac{0^7}{7}\right)}
{\displaystyle = \left((2)^2+\frac{(2)}^7{7}\right)-\left((0)^2)+}