5.3 The Fundamental Theorem of Calculus/27: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math>\int_2^0 x(2+x^5)dx</math><br>
<math>\int_2^0 x(2+x^5)dx = \int_2^0 (2x+x^6)dx</math><br>
<math>\int_2^0 (2x+x^6)dx</math><br>
<math>= \left(\frac{2x^2}{1+1}+\frac{x^6+1}{6+1}\right)\bigg|_{0}^{2}=\left(x^2+\frac{x^7}{7}\right)\bigg|_{0}^{2}</math><br>
<math>= \left(\frac{2x^2}{1+1}+\frac{x^6+1}{6+1}\right)\bigg|_{0}^{2}=\left(x^2+\frac{x^7}{7}\right)\bigg|_{0}^{2}</math><br>
<math>= \left((2)^2+\frac{(2)^7}{7}\right)-\left((0)^2+\frac{0^7}{7}\right)</math>
<math>= \left((2)^2+\frac{(2)^7}{7}\right)-\left((0)^2+\frac{0^7}{7}\right)</math>

Revision as of 20:16, 25 August 2022




{\displaystyle = \left((2)^2+\frac{(2)}^7{7}\right)-\left((0)^2)+}