6.2 Trigonometric Functions: Unit Circle Approach/14: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
\sin{(t)} &= -\frac{\sqrt{3}}{2} & \csc{(t)} &= -\frac{2}{\sqrt{3}}\\[2ex] | \sin{(t)} &= -\frac{\sqrt{3}}{2} & \csc{(t)} &= -\frac{2}{\sqrt{3}}\\[2ex] | ||
\cos{(t)} &= \frac{1}{2} & \sec{(t)} &= \frac{2}{1} = 2\\[2ex] | \cos{(t)} &= \frac{1}{2} & \sec{(t)} &= \frac{2}{1} = 2\\[2ex] | ||
\tan{(t)} &= \frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}} = -\frac{\sqrt{3}}{2}\cdot\frac{2}{1} = -\sqrt{3} & \cot{(t)} &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}\\ | \tan{(t)} &= \frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}} = -\frac{\sqrt{3}}{2}\cdot\frac{2}{1} = -\sqrt{3} & \cot{(t)} &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{sqrt{3}{3}\\ | ||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 22:05, 25 August 2022
Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \sin{(t)} &= -\frac{\sqrt{3}}{2} & \csc{(t)} &= -\frac{2}{\sqrt{3}}\\[2ex] \cos{(t)} &= \frac{1}{2} & \sec{(t)} &= \frac{2}{1} = 2\\[2ex] \tan{(t)} &= \frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}} = -\frac{\sqrt{3}}{2}\cdot\frac{2}{1} = -\sqrt{3} & \cot{(t)} &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{sqrt{3}{3}\\ \end{align} }