6.2 Trigonometric Functions: Unit Circle Approach/14: Difference between revisions
Jump to navigation
Jump to search
No edit summary Tag: Reverted |
No edit summary Tag: Reverted |
||
Line 6: | Line 6: | ||
\sin{(t)} &= \frac{\sqrt{1}}{2} & \csc{(t)} &= -\frac{2}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{2\sqrt{3}}{3}\\[2ex] | \sin{(t)} &= \frac{\sqrt{1}}{2} & \csc{(t)} &= -\frac{2}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{2\sqrt{3}}{3}\\[2ex] | ||
\cos{(t)} &= \frac{3}{2} & \sec{(t)} &= \frac{2}{1} = 2\\[2ex] | \cos{(t)} &= \frac{3}{2} & \sec{(t)} &= \frac{2}{1} = 2\\[2ex] | ||
\tan{(t)} &= {2}}{\frac{3}{2 | \tan{(t)} &= {2}}{\frac{3}{2}} = -\frac{\sqrt{3}}{2}\cdot\frac{2}{1} = -\sqrt{3} & \cot{(t)} &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\[2ex] | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
\frac{\frac{\sqrt{1}} |
Revision as of 22:18, 25 August 2022
Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \sin{(t)} &= \frac{\sqrt{1}}{2} & \csc{(t)} &= -\frac{2}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{2\sqrt{3}}{3}\\[2ex] \cos{(t)} &= \frac{3}{2} & \sec{(t)} &= \frac{2}{1} = 2\\[2ex] \tan{(t)} &= {2}}{\frac{3}{2}} = -\frac{\sqrt{3}}{2}\cdot\frac{2}{1} = -\sqrt{3} & \cot{(t)} &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\[2ex] \end{align} } \frac{\frac{\sqrt{1}}