6.2 Trigonometric Functions: Unit Circle Approach/14: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
Tag: Reverted
No edit summary
Tag: Reverted
Line 10: Line 10:
\end{align}
\end{align}
</math>
</math>
\frac{\frac{\sqrt{1}}
<math>\frac{\frac{\sqrt{1}}<\math>

Revision as of 22:19, 25 August 2022

Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \sin{(t)} &= \frac{\sqrt{1}}{2} & \csc{(t)} &= -\frac{2}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{2\sqrt{3}}{3}\\[2ex] \cos{(t)} &= \frac{3}{2} & \sec{(t)} &= \frac{2}{1} = 2\\[2ex] \tan{(t)} &= {2}}{\frac{3}{2}} = -\frac{\sqrt{3}}{2}\cdot\frac{2}{1} = -\sqrt{3} & \cot{(t)} &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\[2ex] \end{align} } <math>\frac{\frac{\sqrt{1}}<\math>