6.2 Trigonometric Functions: Unit Circle Approach/48: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 5: Line 5:


\sin{\left(\frac{5\pi}{6}\right)} &= \frac{1}{2} & \csc{(t)} &= -\frac{2}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{2\sqrt{3}}{3}\\[2ex]
\sin{\left(\frac{5\pi}{6}\right)} &= \frac{1}{2} & \csc{(t)} &= -\frac{2}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{2\sqrt{3}}{3}\\[2ex]
\cos{\left(\frac{5\pi}{6}\right)} &= \frac{-\sqrt{3}{2}        & \sec{(t)} &= \frac{2}{1} = 2\\[2ex]  
\cos{\left(\frac{5\pi}{6}\right)} &= \frac{-\sqrt{3}}{2}        & \sec{(t)} &= \frac{2}{1} = 2\\[2ex]  
\tan{\left(\frac{5\pi}{6}\right)} &= \frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}} = -\frac{\sqrt{3}}{2}\cdot\frac{2}{1} = -\sqrt{3} & \cot{(t)} &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\[2ex]
\tan{\left(\frac{5\pi}{6}\right)} &= \frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}} = -\frac{\sqrt{3}}{2}\cdot\frac{2}{1} = -\sqrt{3} & \cot{(t)} &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\[2ex]


\end{align}
\end{align}
</math>
</math>

Revision as of 22:25, 25 August 2022